
SQL Lesson 12: Order of execution of a Query
Now that we have an idea of all the parts of a query, we can now talk about how
they all fit together in the context of a complete query.

Complete SELECT query
SELECT DISTINCT column, AGG_FUNC(column_or_expression),
…
FROM mytable
 JOIN another_table
 ON mytable.column = another_table.column
 WHERE constraint_expression
 GROUP BY column
 HAVING constraint_expression
 ORDER BY column ASC/DESC
 LIMIT count OFFSET COUNT;

Each query begins with finding the data that we need in a database, and then
filtering that data down into something that can be processed and understood
as quickly as possible. Because each part of the query is executed sequentially,
it's important to understand the order of execution so that you know what
results are accessible where.

Query order of execution

1. FROM and JOINs

The FROM clause, and subsequent JOINs are first executed to determine the
total working set of data that is being queried. This includes subqueries in this
clause, and can cause temporary tables to be created under the hood
containing all the columns and rows of the tables being joined.

2. WHERE

Once we have the total working set of data, the first-pass WHERE constraints are
applied to the individual rows, and rows that do not satisfy the constraint are
discarded. Each of the constraints can only access columns directly from the
tables requested in the FROM clause. Aliases in the SELECT part of the query are

not accessible in most databases since they may include expressions dependent
on parts of the query that have not yet executed.

3. GROUP BY

The remaining rows after the WHERE constraints are applied are then grouped
based on common values in the column specified in the GROUP BY clause. As a
result of the grouping, there will only be as many rows as there are unique
values in that column. Implicitly, this means that you should only need to use
this when you have aggregate functions in your query.

4. HAVING

If the query has a GROUP BY clause, then the constraints in the HAVING clause
are then applied to the grouped rows, discard the grouped rows that don't
satisfy the constraint. Like the WHERE clause, aliases are also not accessible from
this step in most databases.

5. SELECT

Any expressions in the SELECT part of the query are finally computed.

6. DISTINCT

Of the remaining rows, rows with duplicate values in the column marked
as DISTINCT will be discarded.

7. ORDER BY

If an order is specified by the ORDER BY clause, the rows are then sorted by the
specified data in either ascending or descending order. Since all the expressions
in the SELECT part of the query have been computed, you can reference aliases
in this clause.

8. LIMIT / OFFSET

Finally, the rows that fall outside the range specified by
the LIMIT and OFFSET are discarded, leaving the final set of rows to be returned
from the query.

Conclusion

Not every query needs to have all the parts we listed above, but a part of why
SQL is so flexible is that it allows developers and data analysts to quickly
manipulate data without having to write additional code, all just by using the
above clauses.

	Query order of execution
	1. FROM and JOINs
	2. WHERE
	3. GROUP BY
	4. HAVING
	5. SELECT
	6. DISTINCT
	7. ORDER BY
	8. LIMIT / OFFSET
	Conclusion

